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Enantioselective Total Synthesis of (-)-Chlorothricolide 
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Chlorothricolide(l), the aglycon of the antibiotic chlorothricin,1 

is the simplest member of the spirotetronate class of natural 
products that includes the kijanimicins and tetrocarcins.2 Al­
though Yoshii and co-workers have synthesized racemic 24-0-
methylchlorothricolide(2),3achlorothricolide itself has remained 
an elusive target.3-4 We therefore are pleased to report herein the 
first total synthesis of (-)-l by a route involving the tandem 
inter- and intramolecular Diels-Alder reaction of hexaenoate 3 
and the chiral dienophile CR)-4.5 This approach, which we believe 
is inherently more efficient than potential sequences involving 
the coupling of fully elaborated top and bottom half fragments, 
is feasible only by virtue of the high diastereofacial and exo 
selectivity of 4.4b-5 The C(9)-trimethylsilyl steric directing group 
of 3 also plays a key role by controlling the stereochemical course 
of the intramolecular Diels-Alder reaction leading to the bottom 
half octahydronaphthalene unit.4* 
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Hexaenoate 3 was synthesized by a 10-step sequence from the 
known acetylenic ketone 5.6 Thus, asymmetric reduction of 5 
with the chiral borane generated in situ from (-)-a-pinene and 
9-BBN (neat)7 and protection of the resulting alcohol (89-94% 
ee) as a MOM ether provided 6 in 71% yield overall. a-Iodo 
vinylsilane 7 was prepared in 79% yield by a three-step sequence 
involving partial DIBAL reduction of the carbomethoxyl group, 
protection of the aldehyde as a dimethyl acetal, and hydroalu-
mination-iodination of the acetylenic silane using the conditions 
developed in our previous synthesis of racemic 6.4a Suzuki cross 
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coupling of 7 and 1.4 equiv of vinylboronic acid 84b using Kishi's 
modified conditions8 followed by Swern oxidation of the primary 
alcohol then gave aldehyde 9 (86% yield).9 The upper triene unit 
was then elaborated by treatment of 9 with the lithium anion of 
dienylic phosphonate 10 [a 5:1 mixture of C(20) (Z)- and (E)-
olefin isomers],10 giving 11, also as a ca. 5:1 mixture of C(20)-
C(21) olefin isomers, in 84% yield. The newly formed C(16)-
C(17) olefin is trans in 11. Finally, the C(l)-C(3) dienophile 
unit was introduced by deprotection of the dimethyl acetal (LiBF4, 
wet CH3CN)11 and Horner-Wadsworth-Emmons reaction of 
the resulting aldehyde with /3-keto phosphonate 12,10 thereby 
completing the synthesis of 3 (78% yield). 
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The tandem inter-intramolecular Diels-Alder reaction was 
performed by heating a mixture of 3 and (R)-4 (2 equiv) in toluene 
(1 M in 3) at 120 0C for 20 h. This provided the desired 
cycloadduct 13 in 40-45% yield along with 19% of a mixture of 
cycloadduct isomers12 and 25-30% of the intramolecular Diels-
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reaction of (R)-4 and ent-3 (present at the ca. 3-5% level in 3). 
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Alder adduct 14 with a C(16)-C(21) (£,£,£)-triene. Owing to 
the ease with which the C(20)-C(21) trisubstituted olefin 
isomerizes,3a>4b 14 was treated with an additional 2 equiv of (R)-4 
in Cl2C=CHCl at 125 ° C for 28-36 h, which provided additional 
13 (up to 58% from 14; 55-59% total yield from 3 after one 
recycle). 
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Methanolysis of 13 (K2CO3, MeOH) and then DCC-DMAP-
mediated esterification of the resulting tertiary a-hydroxy ester 
with 15 (5 equiv) provided triester 16 in 91% yield. Dieckmann 
closure of the spiro tetronate was accomplished by treatment of 
16 with LiN(TMS)2 in THF at -78 0C, warming the solution of 
the enolate to O 0C, and then addition of MOM-Cl and HMPA 
(1.8 equiv) .4^13 The two allyl protecting groups then were removed 
from 17 by using Pd(PPh3J4 (0.05 equiv) and dimedone in THF, 
giving the seco acid 18 in 88% yield for the two steps.14 

Macrolactonization of 18 was accomplished by using BOP-Cl 
(1.9 equiv) and Et3N (3.9 equiv) in toluene at 100 0C for 1 h.15 

Under these conditions, macrolactone 19 was obtained in 50% 
yield along with 31% of recovered 18 (72% based on recovered 
18). Finally, removal of the TBDPS ether (HF-Et3N, CH3-
CN), oxidation of the primary allylic alcohol to the carboxylic 
acid,16 and simultaneous removal of the two MOM ethers and 
cleavage of the vinylsilane by using BF3-Et2O and EtSH provided 
syntheticchlorothricolide(l) ([a]25

D-23° (c = 0.2,CH2Cl2).
3e-4i-17 

Because an authentic reference sample of 1 was unavailable, 
synthetic chlorothricolide was treated with CH2N2 to give 
dimethylchlorothricolide 20 ([a]25

D -29.3° (c = 0.95, CHCl3), 
mp228.5-229°C;lit.1»[a]20D-30° (c= 1,CHCl3),lit.

11 mp230 
0C)1 which proved identical in all respects (except optical rotation 
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and melting point) with an authentic sample of racemic 20 kindly 
provided by Professor Yoshii. 
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